Contextures: Mechanism of Representation Learning **Carnegie Mellon University** Runtian Zhai, CMU CS PhD Dissertation

Why are foundation models so good on downstream tasks so different from pretraining task? When will the scaling law end?

The Contexture Theory Representations are learned from the association between input X and context variable A

Input X	Context
Sample	Label of
Sample	Neighbo
Image	Cropped
Text	First k to
Image	X plus no
Image	Text capt
	Input XSampleSampleImageImageImage

Joint dist. $P^+(X, A)$, marginals P_X, P_A L^2 function spaces $L^2(P_X), L^2(P_A)$ **Expectation operator**

 $T_P^+: L^2(P_A) \to L^2(P_X)$ $(T_P + g)(x) = \mathbb{E}_{P^+}[g(A)|x]$ SVD of T_{P+} (analogous to PCA) • Singular values $1 = s_0 \ge s_1 \ge \cdots \ge 0$ • Left singular func. $\mu_0, \mu_1, \dots \in L^2(P_X)$ • $\mu_0 \equiv 1, (\mu_i)_{i \ge 0}$ forms basis of $L^2(P_X)$

Var A

r of X

limage

kens

oise

tion

Result 4: Scaling up the model size produces diminishing returns. Further Compatible: The context helps learn progress requires better contexts • Size \uparrow : Func. class of $\Phi \rightarrow L^2(P_X)$ a predictor of target $f^* \in L^2(P_X)$ Model \rightarrow Top-*d* singular functions Metric: $\rho(f^*, P^+) = \max_{g \neq 0} \frac{\langle f^*, T_{P^+}g \rangle}{\|f^*\|_{P_X} \|g\|_{P_A}}$ If close enough, scaling has no use Comp. set: $\mathcal{F}_{c} = \{f^{*}: \rho(f^{*}, P^{+}) \geq c\}$ Scaling law is not all we need. Predictor: $\hat{f}(x) = W\Phi(x) + b$ **Scientific understanding is a must** $span(\phi_1, \cdots, \phi_d) = span(\mu_1, \cdots, \mu_d)$ Extremely weak: A is random noise Extremely strong: A = XAssociation controls decay rate of S_i 0.50.550 -100(c) Strong association Weak association derate association Too weak: Few tasks are compatible Too strong: High sample complexity **PCA:** Top-*d* singular vectors of *T* BERT is best with moderate mask ratio minimize the prediction error of f^* ⊲ 95 SS 90 **6**85 Mask ratio 0.9 **08** U

2 5 0

Result 1: Pretrained models transfer to tasks compatible with the context **Result 2:** The optimal encoder Φ on \mathcal{F}_c **Result 5:** A good context should have learns the span of top-d singular func. Moderate association between X and A $\mu_0 \equiv 1$ is implicitly included in **b Theorem:** This Φ achieves the lowest worst-case approximation error on \mathcal{F}_{c} **Analogy: PCA** • Spaces of X and A are finite • $f^* \in \mathbb{R}^{|X|}, T_{P^+} = T$ is a matrix • Goal: Learn embedding $E \in \mathbb{R}^{|X| \times d}$ **Result 3:** Representations of deep models align with top-d singular func. < 0.8

Width

