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New Machine Learning Paradigm

End-to-end 
Deep Learning

Foundation 
Models
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Representation Learning & Foundation Models
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Downstream
Fine-tune

Upstream
Pretrain



Huge Empirical Success

4



Scaling Law

• Larger models and larger datasets lead to better performance
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Emergent Abilities

6Wei et al. Emergent Abilities of Large Language Models



Current Situation
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Current Situation
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Scaling Law is Not All We Need

• The scaling law is only an empirical “law”
• Like Moore’s law or any other law, it’s not always reliable

10



We need to have a scientific 
understanding of the mechanism of 
representation learning (pretraining)!
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Without such an understanding…

• We don’t know the limits of scaling
• We don’t know when to expect those limits
• We don’t know how to advance once it reaches the limits
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This thesis

• Establishes the contexture theory
• Which delineates what representation a foundation model learns
• Implies that making models larger has diminishing returns
• And shows how to make further progress beyond scaling
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Central Argument:
Representations are learned from 
the association between the 
input X and a context variable A
This is called the learning the contexture
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A Unified Theory

• Prior work treats different 
pretraining methods in very 
different ways

• The contexture theory unifies a 
variety of methods, such as
• Supervised learning
• Contrastive learning
• Masked autoencoders
• Manifold learning
• Kernel machines
• Diffusion models
• Knowledge distillation
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This talk

• Part 1: Fundamentals of the contexture theory
• Part 2: How to learn the contexture?
• Part 3: Learning the contexture is optimal
• Part 4: How to obtain better contexts?

16



Part 1:
Fundamentals
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Problem Setting

• Data: Unlabeled samples ≫ Labeled samples

• Pretraining: Learn a d-dimensional encoder Φ: 𝒳 → ℝ𝑑  using the 
unlabeled samples

• Downstream: Fit a linear model using the labeled samples
መ𝑓 𝑥 = 𝑊Φ 𝑥 + 𝑏
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Result #1:
Representations are learned from 
the association between the 
input X and a context variable A
This association is called the contexture
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Two systems of thinking by Daniel Kahneman

20

Representation 
learning. It is 

fast and 
associative, 

but it is bad at 
reasoning

• Recognizing an image of a crosswalk
• Calculating 2 + 2
• Which state is Pittsburgh in?

• ReCAPTCHA: Select all crosswalks
• Calculating 177×284
• How many states start with “N”?



Ilya Sutskever’s Deep Learning Hypothesis

• “If you have a large neural network, it can do anything a human 
can do in a fraction of a second.”

• Representation learning can do any System 1 thinking
• Better than humans thanks to its larger memory and faster compute
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Example: Self-supervised Learning

Contrastive learning Masked autoencoders
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X = Image   A = View (corrupted image)

X = Image   A = Masked image



Example: BERT

23Image from sbert.net

X = Text       A = Masked text



Example: CLIP
• Vision-language model
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X = Image   
A = Text caption



Context Variable

Method Input X Context Variable A
Supervised learning Sample Label
K-nearest neighbor Sample Neighbor of X
Diffusion models Image X plus noise
Contrastive learning Image A view of the image
BERT Text Masked text
Vision-language models (CLIP) Image Text caption
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Context Variable

• Joint distribution 𝑃+ 𝑋, 𝐴

• With marginals 𝑃𝑋 and 𝑃𝐴

• 𝑳𝟐 function spaces 𝐿2 𝑃𝑋 , 𝐿2 𝑃𝐴 :

𝑓1, 𝑓2 𝑃𝑋
= 𝔼𝑃𝑋

𝑓1 𝑋 𝑓2 𝑋

𝑔1, 𝑔2 𝑃𝐴
= 𝔼𝑃𝐴

𝑔1 𝐴 𝑔2 𝐴

• Expectation operator 𝑇𝑃+: 𝐿2 𝑃𝐴 → 𝐿2 𝑃𝑋

𝑇𝑃+𝑔 𝑥 = ∫ 𝑔 𝑎 𝑃+ 𝑎 𝑥 𝑑𝑎 = 𝔼 𝑔 𝐴 |𝑥
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Result #2:
Representation learning preserves 
the most information of 𝑇𝑃+

We call this “learning the contexture”
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Analogy: PCA

• Finite spaces 𝒳 = 𝑁, 𝒜 = 𝑀

• 𝑓 ∈ 𝐿2 𝑃𝑋 , 𝑔 ∈ 𝐿2 𝑃𝐴  are vectors in ℝ𝑁 , ℝ𝑀

• 𝑇𝑃+  is a matrix 𝑇 ∈ ℝ𝑁×𝑀

• Goal: Learn a 𝑑-dim embedding 𝐸 ∈ ℝ𝑁×𝑑

28

• PCA: If 𝐸 is the top-𝑑 left singular vectors of 𝑇, then it maximizes 
the explained variance (information)



SVD of 𝑇𝑃+

• 𝑠𝑖 ∈ ℝ: Singular values. 1 = 𝑠0 ≥ 𝑠1 ≥ ⋯ ≥ 0

• 𝜇𝑖 ∈ 𝐿2 𝑃𝑋 , 𝜈𝑖 ∈ 𝐿2 𝑃𝐴 : Left/right singular functions

• Zeroth singular functions are constant: 𝜇0 ≡ 𝜈0 ≡ 1

• Dual kernel integral operator: 𝑇𝑘𝑋
+ = 𝑇𝑃+𝑇𝑃+

∗

• Similar to 𝑇𝑇⊤ in the vector space scenario

• 𝑠𝑖
2, 𝜇𝑖  are the eigenvalues and eigenfunctions of 𝑇𝑘𝑋

+
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Learning the Contexture

• An encoder Φ = 𝜙1, ⋯ , 𝜙𝑑  is said to learn the contexture, if 
span 𝜙1, ⋯ , 𝜙𝑑 = span 𝜇1, ⋯ , 𝜇𝑑

• Also called extracting the top-𝑑 eigenspace of 𝑇𝑘𝑋
+

• Remark 1: It only recovers the linear span, but does not recover 
the exact function 𝜇𝑖  (which is much harder)

• The downstream model is linear, so we only care about the span
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Learning the Contexture

• An encoder Φ = 𝜙1, ⋯ , 𝜙𝑑  is said to learn the contexture, if 
span 𝜙1, ⋯ , 𝜙𝑑 = span 𝜇1, ⋯ , 𝜇𝑑

• Also called extracting the top-𝑑 eigenspace of 𝑇𝑘𝑋
+

• Remark 2: It excludes 𝜇0 ≡ 1

• The bias term 𝑏 in downstream linear model implicitly includes 𝜇0 
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Learning the Contexture

• An encoder Φ = 𝜙1, ⋯ , 𝜙𝑑  is said to learn the contexture, if 
span 𝜙1, ⋯ , 𝜙𝑑 = span 𝜇1, ⋯ , 𝜇𝑑

• Also called extracting the top-𝑑 eigenspace of 𝑇𝑘𝑋
+
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Learning the contexture =
Learning a 𝑑-dimensional space



Next

• Part 2: How to learn the contexture?
• Part 3: Why learning the contexture is optimal?
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Part 2:
How to learn the contexture?
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Classical Method: Kernel PCA

• 𝑚 pretraining samples

• Eigen-decompose an 𝑚 × 𝑚 Gram matrix

• Time complexity: About 𝑂 𝑚3

• Not scalable when 𝑚 is huge
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Result #3:
Contextures can be learned by 
training a large model to optimize 
certain variational objectives
The “deep learning” way
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Variational Objective ℛ Φ

• Condition: The minimizer of 𝑅 Φ  on 𝐿2 𝑃𝑋  is the Φ∗ that learns 
the contexture

• Then, it suffices to have an expressive model and a good optimizer
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This method works for

• Supervised learning
• Multi-view learning
• Masked autoencoders
• Manifold learning
• Kernel machines
• Diffusion models
• Knowledge distillation
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Example: Multi-view Learning
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Multi-view Learning

• Positive pair: 𝐴, 𝐴+ ∼ 𝑃+ ⋅ 𝑋

• Goal: Give similar embeddings to a positive pair
• Degenerate solution: Same embedding to all 𝐴 (feature collapse)
• Non-contrastive learning: Train Ψ: 𝒜 → ℝ𝑑  to

• Ψ must be rank-𝑑, so cannot be constant on all 𝐴

Minimize    𝔼𝑋∼𝑃𝑋
𝔼𝐴,𝐴+∼𝑃+ ⋅ 𝑋 Ψ 𝐴 − Ψ 𝐴+

2
2

s.t.           Cov𝑃𝐴
Ψ = 𝐼      (orthonormality constraint)

40



Multi-view Learning

• The learned encoder is Ψ for 𝐴, not Φ for 𝑋

• Conversion: Average encoder  Φ 𝑥 = 𝑇𝑃+Ψ 𝑥 = 𝔼 Ψ 𝐴 |𝑥

• Theorem: If Ψ∗ is the optimal solution, then Φ∗ learns the contexture

Minimize    𝔼𝑋∼𝑃𝑋
𝔼𝐴,𝐴+∼𝑃+ ⋅ 𝑋 Ψ 𝐴 − Ψ 𝐴+

2
2

s.t.           Cov𝑃𝐴
Ψ = 𝐼      (orthonormality constraint)
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All of these learn the contexture

• Supervised learning
• Multi-view learning
• Masked autoencoders
• Manifold learning
• Kernel machines
• Diffusion models
• Knowledge distillation
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Many existing pretraining objectives 
can learn the contexture.
But why is the contexture good?
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Part 3:
Learning the Contexture is Optimal

44



“Optimal”?

• Optimal means it leads to the best encoder Φ

• We define “best”, by defining how Φ is evaluated
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How to evaluate an encoder Φ?

• Extrinsic evaluation: Performance of Φ on a specific task
• This is what we ultimately care about

• Intrinsic evaluation: Evaluate Φ without any task
• We might not know all the tasks at pretrain time
• We want Φ to be transferable to new tasks
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Intrinsic Evaluation

• No model is good on all tasks, but not all tasks are important

• Counting how many words in a paragraph contain the letter “e” is 
a valid task. LLMs are bad at it, but most people don’t care
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Example
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Example
• Runtian:
Count how many words in the following paragraph contains the letter “e”:
Overall, although there … and comparing contexts in practice.

• Claude 3.7 Sonnet on April 14, 2025:
I'll count the words containing the letter "e" in the paragraph you provided. Let 
me go through it word by word:
1. "Overall" - contains “e” …
59. "comparing" - contains “e”   (wrong)
60. "contexts" - contains “e” …
(final answer is also wrong)
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We only care about a small set of tasks

• This set can be defined with the context

• Prior knowledge: The context is useful for the task
• We say that the context and the task are compatible

• Intrinsic evaluation: Evaluate Φ on all compatible tasks

50



Result #4:
No encoder is good for all tasks.
But contexture is optimal for tasks 
that are compatible with the context
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Compatibility

• Task target function 𝑓∗: 𝒳 → ℝ

• A context 𝑃+ and a task 𝑓∗ are compatible, if the context is useful 
for learning a predictor for the task

• Formally: They are compatible if a one can learn a predictor for 𝑓∗ 
using the corrupted dataset 𝑎1, 𝑓∗ 𝑥1 , ⋯ , 𝑎𝑚, 𝑓∗ 𝑥𝑚

• We don’t see original 𝑥𝑖  but can only see one 𝑎𝑖 ∼ 𝑃+ ⋅ 𝑥𝑖
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Compatibility

• The compatibility between task 𝑓∗ and context 𝑃+ is

𝜌 𝑓∗, 𝑃+ = max
𝑔≠0

𝑓∗, 𝑇𝑃+𝑔

𝑓∗
𝑃𝑋

𝑔 𝑃𝐴

∈ 0,1

• Theorem: If 𝜌 𝑓∗, 𝑃+  is close to 1, then a predictor for 𝑓∗ can be 
learned using 𝑎1, 𝑓∗ 𝑥1 , ⋯ , 𝑎𝑚, 𝑓∗ 𝑥𝑚
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Intrinsic Evaluation of Φ

• Class of compatible tasks:
ℱ𝜖 = 𝑓∗: 𝜌 𝑓∗, 𝑃+ ≥ 1 − 𝜖

• Worst-case approximation error:
𝑒𝑟𝑟 Φ; ℱ𝜖 = max

𝑓∗∈ℱ𝜖, 𝑓∗
𝑃𝑋

=1
 min
𝑤∈ℝ𝑑,𝑏∈ℝ

𝑤⊤Φ + 𝑏 − 𝑓∗
𝑃𝑋

2

• Theorem: Among all 𝑑-dim encoders, the Φ that learns the 
contexture is a minimizer of 𝑒𝑟𝑟 Φ; ℱ𝜖 , so it is optimal
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Optimal linear 
model on Φ for 𝑓∗



Learning the contexture is 
optimal if the task is known to be 
compatible with the context!
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Result #5:
Increasing model size has diminishing 
returns! Further improvement requires 
better contexts
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Intuition

• For a larger model, function class of Φ → 𝐿2 𝑃𝑋

• Optimizer of ℛ Φ → top-𝑑 eigenfunctions
• When they are close enough, further scaling has little benefit
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Experiment

• Empirically verify that: 
• High alignment: 𝑠𝑝𝑎𝑛 Φ ≈ 𝑠𝑝𝑎𝑛(top-d eigenfunctions)
• Diminishing return: Making a large model larger is useless

• Alignment metric: Canonical Correlation Analysis (CCA)

• Compare between:
• Exact top-d eigenfunctions obtained by kernel PCA
• The representation of a deep encoder Φ
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Setting

• Dataset: Abalone – a tabular dataset from OpenML

• Model: MLP 

• Embedding dimension: d = 128

• Context: KNN with K = 30

• Pretraining: Non-contrastive learning
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3-layer MLP, different widths

0.6
0.65

0.7
0.75

0.8
0.85

0.9

Width

Alignment (CCA) with top-d eigenfunctions
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High alignment: 
When sufficiently 
deep, CCA  >0.85



3-layer MLP, different widths
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0.6
0.65

0.7
0.75

0.8
0.85

0.9

Width

Alignment (CCA) with top-d eigenfunctions Diminishing return: 
Negative effect 
after this width



Width = 512, different depths
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Width = 512, different depths
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Alignment (CCA) with top-d eigenfunctions

Diminishing return



Conclusion

• When the model is large enough, further scaling has little use
• Further improvement requires better contexts
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Part 4:
Towards better contexts
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First question:
Which contexts are “better”?
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Bad Contexts

• Example 1: 𝐴 is independent of 𝑋

• Example 2: 𝐴 = 𝑋

• Both contexts are clearly useless 

• Key: The association strength between 𝑋 and 𝐴
• The context is useless if the association is too weak/strong
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Result #6:
A good context must have 
a moderate association 
between 𝑋 and 𝐴
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Empirical Evidence

• BERT is the best when the mask ratio is neither too high nor too low

69

75

80

85

90

95

0.05 0.10 0.15 0.20 0.30 0.40 0.50 0.60 0.70 0.80
Mask Ratio

Performance of BERT on SST-2



The association strength between 𝑋 and 𝐴 
affects the decay rate of the eigenvalues
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Weak Association

• Fast eigenvalue decay

• Very few tasks are compatible

• The encoder is not transferable
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Strong Association

• Slow eigenvalue decay

• Need a larger embedding dimension 𝑑

• Leads to a higher sample complexity
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How to obtain moderate association

• Suppose we have 𝑘 contexts 𝑃1
+, ⋯ 𝑃𝑘

+

• But each context is too weak/strong, so no one is good

• Idea: Mix them together!
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Result #7:
Mixing multiple existing contexts
can give us better contexts
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Three base operations of mixing contexts

• Concatenation
• Convolution
• Convex combination

75



Concatenation

• Pretrain individual encoders Φ1, Φ2, ⋯ , Φ𝑘  on 𝑘 contexts

• Φ 𝑥 = Φ1 𝑥 , Φ2 𝑥 , ⋯ , Φ𝑘 𝑥

• Makes the association stronger

76



Convolution

• Analogous to composing data augmentations
• Apply translation, rotation and cropping to the same image

• Makes the association weaker
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Convex Combination

• Training objective of each individual context ℛ1, ⋯ , ℛ𝑘

• Convex combination: ℛ = 𝑤1ℛ1 + ⋯ + 𝑤𝑘ℛ𝑘

• Balance weak and strong associations
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Convolution & Convex Combination in 
Random Walk Contexts

• Two random walk contexts: Solid and dashed edges
• Convolution = Two-step walk: First solid, second dashed
• Convex combination = One-step walk: Solid with probability 𝑤1
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When to use each mixing operation?

Mixing operation When to use?
Concatenation All contexts are weak
Convolution All contexts are strong
Convex combination Mixed weak and strong
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Closing Remarks
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Open Problems

• Inductive bias of model architecture

• Implicit bias of optimization

• Create completely new contexts from data, not heuristics

• Extend the theory to system 2 thinking (reasoning)
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Conclusion: The contexture theory clarifies 
the mechanism of representation learning
• Result #1: Representations are learned from association
• Result #2: Contexture preserves the most information of 𝑇𝑃+

• Result #3: The “deep learning” way of learning the contexture
• Result #4: Contexture is optimal for compatible tasks
• Result #5: Making models larger has diminishing returns
• Result #6: A good context should have a moderate association
• Result #7: Mixing contexts produces better contexts

83

Thank you
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